Electrical and Thermoelectrical Properties of TlMnS₂ and TlMnSe₂

S.N. Mustafaeva, C,S E.M. Kerimova, A.I. Jabbarly, and Sh.D. Alizade

Institute of Physics National Academy of Sciences Baku, Azerbaijan physics@lan.ab.az, ekerimova@physics.ab.az

The synthesis regimes of TlMnSe₂ and TlMnS₂ phases have been worked out. X-ray analysis showed that TlMnS₂ is crystallized in tetragonal structure with elementary cell parameters a=7.74; c=30.60 \approx ; roentgen density ρ_x =6.40 g/cm³. TlMnSe₂ is crystallized in hexagonal structure with elementary cell parameters a=6.53; c=23.96 \approx ; z=8; ρ_x =6.71 g/cm³.

The electric and thermoelectric properties of TlMnS $_2$ and TlMnS $_2$ were studied. In the temperature range 130 - 315 K, temperature dependence of the conductivity (σ) of TlMnS $_2$ increases exponentially with increasing temperature, i.e. σ (T)- dependence had a semiconductor nature. It was shown that σ (T)-dependence of TlMnS $_2$ consists of three various regions with following activation energies: 0.178, 0.08 and 0.44eV.

The temperature dependence of the conductivity of TlMnSe₂ had a metallic nature. Temperature dependence of the thermoelectromotive force (α) in TlMnSe₂ was studied. The thermo-e.m.f. sign corresponded to the p-type conductivity of TlMnSe₂ in the temperature range 88 - 300K. With increasing temperature from 88 to 300K, the value of the thermo- e.m.f. in TlMnSe₂ increased from 77 to 200 μ V/K. At T=194K an anomaly was revealed in the dependence α (T).

The low-temperature branch of $\alpha(T)$ - dependence in TlMnSe₂ had a linear character with extrapolation to T=0 according to metallic formula for thermo-e.m.f.:

$$\alpha(T) = \frac{\pi^2}{3} \cdot \frac{k^2 T}{e} \left(\frac{\partial \ell n \sigma}{\partial E} \right)_{E=E_c},$$

where k is Boltzmann constant; e-electron charge; E_F -Fermi energy and $kT \le E_F$.